# Linking With Continuous Exponential Families: Single-Group Designs

Shelby J. Haberman

November 2008

ETS RR-08-61



# **Linking With Continuous Exponential Families: Single-Group Designs**

Shelby J. Haberman ETS, Princeton, NJ

As part of its nonprofit mission, ETS conducts and disseminates the results of research to advance quality and equity in education and assessment for the benefit of ETS's constituents and the field.

ETS Research Reports provide preliminary and limited dissemination of ETS research prior to publication. To obtain a PDF or a print copy of a report, please visit:

http://www.ets.org/research/contact.html

Copyright @ 2008 by Educational Testing Service. All rights reserved.

ETS, the ETS logo, and LISTENING. LEARNING. LEADING. are registered trademarks of Educational Testing Service (ETS).



### Abstract

Continuous exponential families are applied to linking forms via a single-group design. In this application, a distribution from the continuous bivariate exponential family is used that has selected moments that match those of the bivariate distribution of scores on the forms to be linked. The selected continuous bivariate distribution then yields continuous univariate marginal distributions for the two forms. These marginal distributions then provide distribution functions and quantile functions that may be employed in equating. Normal approximations are obtained for the sample distributions of the conversion functions.

Key words: Moments, information theory

## Acknowledgments

I thank Tim Davey, Dan Eignor, and Yi-Hsuan Lee for helpful comments.

Application of continuous exponential families to linking has been considered for equivalent-groups designs (Haberman, 2008). In such an application, it suffices to consider univariate continuous exponential families. For single-group designs for linking forms, bivariate continuous exponential families may be used. In this approach, the member of the bivariate continuous exponential family used to link two forms is chosen to share selected moments with the joint distribution of the scores on two forms to be linked. Once the bivariate continuous distribution is selected, one then has a continuous marginal distribution that corresponds to each of the forms under study. These marginal distributions may then be used to construct conversion functions that link the forms. This procedure is readily implemented. For random sampling, the estimated conversion functions are easily computed, and, for each point at which a conversion is desired, the estimated conversion function has an approximate normal distribution with mean 0 and an asymptotic covariance matrix that is readily estimated. Results in this report are related to recent work on an alternative to kernel equating (Wang, 2008), although the models in this report are more general and numerical methods are somewhat different.

Section 1 describes the proposed continuous exponential families for bivariate distributions and defines conversions based on these families are defined. Different models are compared by use of an information criterion (Haberman, 2008). Section 2 develops estimates of parameters and conversion functions and considers the large-sample properties of estimated conversions in terms of consistency and asymptotic normality. Estimated asymptotic standard deviations are provided for the estimated conversions. Section 3 presents a Newton-Raphson algorithm for computation of parameter estimates and discussed numerical quadrature issues.

Section 4 illustrates results by use of a published example to which kernel equating has previously been applied (von Davier, Holland, & Thayer, 2004).

Conclusions and possible further developments are examined in section 5.

### 1 Bivariate Continuous Exponential Families

In the equating problem considered, a sample of n examinees receives two different forms. For Form j, where j is 1 or 2, possible scores are in the closed interval with finite lower bound  $c_j$  and finite upper bound  $d_j > c_j$ . For examinee i,  $1 \le i \le n$ , the score on Form j is  $X_{ij}$ . It is assumed that the pairs  $(X_{i1}, X_{i2})$ ,  $1 \le i \le n$ , are mutually independent and identically distributed random vectors such that  $X_{ij}$  has distribution function  $F_j$ . No requirement is imposed that the scores be integers or rational numbers. Nonetheless, in typical applications,  $F_j$  is not continuous, so that equating forms based on observed scores and some equipercentile approach normally involves some approximation of the distribution function  $F_j$  by a continuous distribution function  $G_j$ , which is strictly increasing on some open interval B(j) that contains both  $c_j$  and  $d_j$ . For each positive real p < 1, there exists a unique continuous and increasing quantile function  $R_j$  such that  $G_j(R_j(p)) = p$ . The linking function  $e_{12}$  for conversion of a score on Form 1 to a score on Form 2 is then  $e_{12}(x) = R_2(G_1(x))$  for x in B(1), while the linking function  $e_{21}$  for conversion of a score on Form 2 to a score on Form 1 is  $e_{21}(x) = R_1(G_2(x))$  for x in B(2). Both  $e_{12}$  and  $e_{21}$  are strictly increasing and continuous on their respective ranges, and  $e_{12}$  and  $e_{21}$  are inverses, so that  $e_{12}(e_{21}(x)) = x$  for x in B(2) and  $e_{21}(e_{12}(x)) = x$  for x in B(1) and  $g_2$  is continuous at  $e_{12}(x)$ , then application of standard results from calculus shows that  $e_{12}$  has derivative  $e'_{12}(x) = g_1(x)/g_2(e_{12}(x))$  at x. Similarly, if  $g_2$  is continuous at x in B(2) and  $g_1$  is continuous at  $e_{21}(x)$ , then  $e_{21}(x)$  has derivative  $e'_{21}(x) = g_2(x)/g_1(e_{21}(x))$  at x.

One method to obtain a suitable pair of distribution functions  $G_1$  and  $G_2$  is to approximate the joint distribution of  $\mathbf{X}_i = (X_{i1}, X_{i2})$  by use of a bivariate continuous exponential family. Let B(j) be bounded for  $1 \leq j \leq 2$ . Let  $u_{kj}$  be a polynomial of degree k on the interval B(j) for  $k \geq 0$  and  $1 \leq j \leq 2$ . For a pair  $\mathbf{k} = (k(1), k(2))$  of nonnegative integers, let  $u_{\mathbf{k}}$  be the polynomial on the plane such that  $u_{\mathbf{k}}(\mathbf{x}) = u_{k(1)1}(x_1)u_{k(2)2}(x_2)$  for real pairs  $\mathbf{x} = (x_1, x_2)$ . Let  $\mu_{\mathbf{k}}$  be the expectation of  $u_{\mathbf{k}}(\mathbf{X}_i)$ , so that  $\mu_{\mathbf{k}}$  is a linear combination of the bivariate moments  $E(X_{i1}^{j(1)}X_{i2}^{j(2)})$  of  $\mathbf{X}_i$  for integers  $j(1) \leq k(1)$  and  $j(2) \leq k(2)$ . Consider a nonempty set K of r pairs of nonnegative integers  $\mathbf{k} = (k(1), k(2))$  such that k(1) or k(2) is positive. Let  $\mu_K$  be the K-array of  $\mu_{\mathbf{k}}$ ,  $\mathbf{k}$  in K, and let  $\mathbf{u}_K(\mathbf{x})$  be the K-array of  $u_{\mathbf{k}}(\mathbf{x})$ ,  $\mathbf{k}$  in K. If  $\mathbf{y}_K$  is a real K-array of  $y_{\mathbf{k}}$ ,  $\mathbf{k}$  in K, and  $\mathbf{z}_K$  is a real K-array of  $z_{\mathbf{k}}$ ,  $\mathbf{k}$  in K, then let  $\mathbf{y}_K'\mathbf{z}_K$  be the summation  $\sum_{\mathbf{k} \in K} y_{\mathbf{k}} z_{\mathbf{k}}$ . Assume that, for any real K-array  $\mathbf{y}_K$ , the variance of  $\mathbf{y}_K'\mathbf{u}_K(\mathbf{X}_i)$  is 0 only if  $y_{\mathbf{k}} = 0$  for each  $\mathbf{k}$  in K. Let  $B = B(1) \times B(2)$  be the interval in the plane that consists of pairs (b(1), b(2)) such that b(1) is in B(1) and b(2) is in B(2). Then a unique continuous bivariate distribution with positive density on B has the exponential family density

$$g_K(\mathbf{x}) = \gamma_K(\boldsymbol{\theta}_K) \exp[\boldsymbol{\theta}_K' \mathbf{u}_K(\mathbf{x})],$$

 $\mathbf{x}$  in B, for a unique K-array  $\boldsymbol{\theta}_K$  with elements  $\theta_{\mathbf{k}K}$ ,  $\mathbf{k}$  in K, and a unique positive real  $\gamma_K(\boldsymbol{\theta}_K)$ 

such that

$$\int_{B} u_{\mathbf{k}}(\mathbf{x}) g_{K}(\mathbf{x}) d\mathbf{x} = \mu_{\mathbf{k}}$$

for  $\mathbf{k}$  in K and

$$\int_{B} g_K(\mathbf{x}) d\mathbf{x} = 1$$

(Gilula & Haberman, 2000). A random vector  $\mathbf{Y}_K = (Y_{1K}, Y_{2K})$  then exists such that  $Y_{jK}$  is in B(j) for  $1 \leq j \leq 2$  and  $\mathbf{Y}_K$  has density  $g_K$ . The moment equalities  $E(u_{\mathbf{k}}(\mathbf{Y}_K)) = E(u_{\mathbf{k}}(\mathbf{X}_i))$  hold for  $\mathbf{k}$  in K, so that  $\mathbf{Y}_K$  has a distribution close to that of  $\mathbf{X}$  in the sense that the expected log penalty function  $I_K = E(-\log g_K(\mathbf{X}))$  is the smallest expected log penalty function  $E(-\log g(\mathbf{X}))$  for all probability densities g on B such that

$$g(\mathbf{x}) = \gamma_K(\boldsymbol{\theta}_{K*}) \exp[\boldsymbol{\theta}'_{K*} \mathbf{u}_K(\mathbf{x})]$$

for some real K-array  $\theta_{K*}$ , and  $E(-\log g(\mathbf{X})) = I_K$  only if  $\theta_{K*} = \theta_K$ .

The moment equations expressed in terms of  $u_{\mathbf{k}}$  can be interpreted in terms of conventional moments if the set K satisfies the hierarchy rule that (k(1), k(2)) is in K whenever (h(1), h(2)) is in K,  $k(1) \leq h(1)$ ,  $k(2) \leq h(2)$ , k(1) and k(2) are nonnegative integers, and k(1) or k(2) is positive. The equations  $E(u_{\mathbf{k}}(\mathbf{Y}_K)) = E(u_{\mathbf{k}}(\mathbf{X}))$  for  $\mathbf{k}$  in K then hold if, and only if,  $E(Y_{1K}^{k(1)}Y_{2K}^{k(2)}) = E(X_{i1}^{k(1)}X_{i2}^{k(2)})$  for all  $\mathbf{k}$  in K.

For  $1 \leq j \leq 2$ , the distribution function  $G_{jK}$  of  $Y_{jK}$  is strictly increasing and continuously differentiable on B(j). If B(j, y), y in B(j), consists of all pairs  $(y_1, y_2)$  such that  $y_1$  is in B(1),  $y_2$  is in B(2), and  $y_j \leq y$ , then

$$G_{jK}(y) = \int_{B(j,y)} g(\mathbf{x}) d\mathbf{x}.$$

The inverse  $R_{jK}$  defined by  $G_{jk}(R_{jK}(p))$  for  $0 is also continuously differentiable and strictly increasing, so that the conversion functions <math>e_{12K} = R_{2K}(G_{1K})$  and  $e_{21K} = R_{1K}(G_{2K})$  are also continuously differentiable and strictly increasing.

As in the case of univariate exponential families (Haberman, 2008), numerical work is simplified if computations employ the Legendre polynomials  $P_k$  for  $k \geq 0$  (Abramowitz & Stegun, 1965, chaps. 8, 22). These polynomials are determined by the equations  $P_0(x) = 1$ ,  $P_1(x) = x$ , and

$$P_{k+1}(x) = (k+1)^{-1}[(2k+1)xP_k(x) - kP_{k-1}(x)],$$

 $k \geq 1$ . If  $\inf(B(j))$  is the infimum of B(j) and  $\sup(B(j))$  is the supremum of B(j), then it is relatively efficient for numerical work to let  $\beta_j = [\inf(B(j)) + \sup(B(j))]/2$  be the midpoint of B(j),  $\eta_j = [\sup(B(j)) - \inf(B(j))]/2$  be half the range of B(j), and

$$u_{kj}(x) = P_k((x - \beta_j)/\eta_j).$$

In applications considered in this report, for integers r(j) > 1,  $1 \le j \le 2$ , the set K consists of the r(1) + r(2) + 1 elements (k(1), 0),  $1 \le k(1) \le r(1)$ , (0, k(2)),  $1 \le k(2) \le r(2)$ , and (1, 1), so that the hierarchy principle holds,  $Y_{jK}$  and  $X_{ij}$  have the same r(j) initial moments for  $1 \le j \le 2$  and  $Y_{1K}$  and  $Y_{2K}$  have the same correlation as  $X_{i1}$  and  $X_{i2}$ . Thus  $Y_{jK}$  and  $X_{ij}$  have the same mean and variance for each j. If r(j) > 2, then  $Y_{jK}$  and  $X_{ij}$  have the same skewness coefficient. If r(j) > 3, then  $Y_{jK}$  and  $X_{ij}$  have the same kurtosis coefficient. In the case of r(1) = r(2) = 2 and use of Legendre polynomials, if  $\theta_{\mathbf{k}}$  is negative for  $\mathbf{k}$  equal to (2,0) or (0,2) and  $\theta_{(1,1)}^2$  is less than  $36\theta_{(2,0)}^2\theta_{(0,2)}^2$ , then  $\mathbf{Y}_K$  corresponds to a bivariate normal random variable  $\mathbf{Z} = (Z_1, Z_2)$ . The distribution of  $\mathbf{Y}_K$  is the same as the conditional distribution of  $\mathbf{Z}$  conditional on  $Z_j$  being in B(j) for  $1 \le j \le 2$ . Comparison of the density formula for the bivariate normal with the density formula for the corresponding continuous exponential family shows that the unconditional variance of  $Z_1$  satisfies

$$\sigma^{2}(Z_{1}) = -\frac{\eta_{1}^{2}}{6\theta_{(2,0)} - \theta_{(1,1)}^{2}/(6\theta_{(0,2)})},$$

the unconditional variance of  $Z_2$  is

$$\sigma^2(Z_2) = -\frac{\eta_2^2}{6\theta_{(0,2)} - \theta_{(1,1)}^2/(6\theta_{(2,0)})},$$

the unconditional correlation of  $Z_1$  and  $Z_2$  is

$$\rho(Z_1, Z_2) = \theta_{(1,1)} / [6(\theta_{(2,0)}\theta_{(0,2)})^{1/2}],$$

the unconditional mean of  $Z_1$  is

$$E(Z_1) = \beta_1 - \frac{\eta_1[\theta_{(1,0)} - \theta_{(0,1)}\theta_{(1,1)}/(6\theta_{(0,2)})]}{6\theta_{(2,0)} - \theta_{(1,1)}^2/(6\theta_{(0,2)})},$$

and the unconditional mean of  $Z_2$  is

$$E(Z_2) = \beta_2 - \frac{\eta_2[\theta_{(0,1)} - \theta_{(1,0)}\theta_{(1,1)}/(6\theta_{(2,0)})]}{6\theta_{(0,2)} - \theta_{(1,1)}^2/(6\theta_{(2,0)})}.$$

One alternative choice of K (Wang, 2008) has K contain all pairs (k(1), k(2)) of nonnegative integers such that k(1) or k(2) is positive,  $k(1) \le r(1)$ , and  $k(2) \le r(2)$ . If r(1) > 1 and r(2) > 2, then  $E(Y_{1K}^{k(1)}Y_{2K}^{k(2)}) = E(X_{i1}^{k(1)}X_{i2}^{k(2)})$  for  $1 \le k(1) \le r(1)$  and  $1 \le k(2) \le r(2)$ .

### 2 Estimation of Parameters

The parameter  $\boldsymbol{\theta}_K$ , the information criterion  $I_K$ , the distribution functions  $G_{jK}$ , and the conversion functions  $e_{12K}$  and  $e_{21K}$  are readily estimated (Gilula & Haberman, 2000; Haberman, 2008). For  $\mathbf{k}$  in K, let  $m_{\mathbf{k}}$  be the sample mean  $n^{-1} \sum_{i=1}^{n} u_{\mathbf{k}}(\mathbf{X}_i)$ , and let  $\mathbf{m}_K$  be the K-array with elements  $m_{\mathbf{k}}$ ,  $\mathbf{k}$  in K. If the covariance matrix of  $\mathbf{m}_K$  is positive definite, then  $\boldsymbol{\theta}_K$  is estimated by the unique K-array  $\hat{\boldsymbol{\theta}}_K$  such that

$$\int_{B} \mathbf{u}_{K}(\mathbf{x}) \hat{g}_{K}(\mathbf{x}) d\mathbf{x} = \mathbf{m}_{K},$$
$$\int_{B} \hat{g}_{K}(\mathbf{x}) d\mathbf{x} = 1,$$

and

$$\hat{g}_K(\mathbf{x}) = \gamma(\hat{\boldsymbol{\theta}}_K) \exp[\hat{\boldsymbol{\theta}}_K' \mathbf{u}_K(\mathbf{x})]$$

for  $\mathbf{x}$  in B.

As the sample size n approaches  $\infty$ ,  $\hat{\boldsymbol{\theta}}_K$  converges to  $\boldsymbol{\theta}_K$  with probability 1, and  $n^{1/2}(\hat{\boldsymbol{\theta}}_K - \boldsymbol{\theta}_K)$  converges in distribution to a multivariate normal random variable with 0 mean and with covariance matrix  $\mathbf{A}_K = \mathbf{C}_K^{-1} \mathbf{D}_K \mathbf{C}_K^{-1}$  (Gilula & Haberman, 2000). Here  $\mathbf{D}_K$  is the covariance matrix of  $\mathbf{u}_K(\mathbf{X})$  and  $\mathbf{C}_K$  is the covariance matrix of the K-array  $\mathbf{u}_K(\mathbf{Y}_K)$ . Thus

$$\mathbf{C}_K = \int_B [\mathbf{u}_K(\mathbf{x}) - \boldsymbol{\mu}_K] [\mathbf{u}_K(\mathbf{x}) - \boldsymbol{\mu}_K]' g_K(\mathbf{x}) d\mathbf{x}.$$

The estimate of  $\mathbf{C}_K$  is

$$\hat{\mathbf{C}}_K = \int_B [\mathbf{u}_K(\mathbf{x}) - \mathbf{m}_K] [\mathbf{u}_K(\mathbf{x}) - \mathbf{m}_K]' \hat{g}_K(\mathbf{x}) d\mathbf{x}.$$

The estimate of  $\mathbf{D}_K$  is

$$\hat{\mathbf{D}}_K = (n-1)^{-1} \sum_{i=1}^n [\mathbf{u}_K(\mathbf{X}_i) - \mathbf{m}_K] [\mathbf{u}_K(\mathbf{X}_i) - \mathbf{m}_K]'.$$

Thus  $\mathbf{A}_K$  has estimate

$$\hat{\mathbf{A}}_K = \hat{\mathbf{C}}_K^{-1} \hat{\mathbf{D}}_K \hat{\mathbf{C}}_K^{-1}.$$

For any nonzero constant K-array  $\mathbf{z}_K$ , the estimated asymptotic standard deviation (EASD) of  $\mathbf{z}_K' \hat{\boldsymbol{\theta}}_K$  is

$$\hat{\sigma}(\mathbf{z}_K'\hat{\boldsymbol{\theta}}_K) = n^{-1/2}(\mathbf{z}_K'\hat{\mathbf{A}}_K\mathbf{z}_K)^{1/2},$$

so that  $(\mathbf{z}_K'\hat{\boldsymbol{\theta}}_K - \mathbf{z}_K'\boldsymbol{\theta}_K)/\hat{\sigma}(\mathbf{z}_K'\hat{\boldsymbol{\theta}}_K)$  converges in distribution to a standard normal random variable.

The minimum expected penalty  $I_K$  may be estimated by

$$\hat{I}_K = -\log \gamma_K(\hat{\boldsymbol{\theta}}_K) - \hat{\boldsymbol{\theta}}_K' \mathbf{m}_K.$$

As the sample size n increases,  $\hat{I}_K$  converges to  $I_K$  with probability 1 and  $n^{1/2}(\hat{I}_K - I_K)$  converges in distribution to a normal random variable with mean 0 and variance

$$\sigma^2(-\log g_K(\mathbf{X})) = \mu_K' \mathbf{A}_K \mu_K.$$

The EASD of  $\hat{I}_K$  is then

$$\hat{\sigma}(\hat{I}_K) = n^{-1/2} (\mathbf{m}_K' \hat{\mathbf{A}}_K \mathbf{m}_K)^{1/2}.$$

To verify this claim, let  $H_K$  be the function defined by

$$H_K(\boldsymbol{\theta}) = -n^{-1} \sum_{i=1}^n \log g_K(\boldsymbol{\theta}),$$

and let  $H_{K0} = K_K(\boldsymbol{\theta}_K)$ . Apply the central limit theorem to  $H_{K0}$  to show that the scaled difference  $n^{1/2}(H_{K0} - I_K)$  converges in distribution to a normal random variable with mean 0 and variance  $\sigma^2(-\log g_K(\mathbf{X}))$ . Differentiation and Taylor's theorem show that the difference

$$2(H_{K0} - \hat{I}_K) = (\hat{\boldsymbol{\theta}}_K - \boldsymbol{\theta}_K)' \mathbf{C}_K^* (\hat{\boldsymbol{\theta}}_K - \boldsymbol{\theta}_K)$$

for  $\mathbf{C}_K^*$  the covariance matrix of the K-array  $\mathbf{u}_K(\mathbf{Y}_K^*)$  for some random vector  $\mathbf{Y}_K^*$  with density  $\gamma_K(\boldsymbol{\theta}_K^*) \exp[(\boldsymbol{\theta}_K^*)' \mathbf{u}_K(\mathbf{x})]$  for some  $\boldsymbol{\theta}_K^*$  on the line segment between  $\boldsymbol{\theta}_K$  and  $\hat{\boldsymbol{\theta}}_K$ . It follows that  $n^{1/2}(H_{K0} - \hat{I}_K)$  converges in probability to 0 and  $n^{1/2}(\hat{I}_K - I_K)$  converges in distribution as claimed.

For  $1 \leq j \leq 2$ , the distribution function  $G_{jK}$  has estimate  $\hat{G}_{jK}$  defined by

$$\hat{G}_{jK}(y) = \int_{B(j,y)} \hat{g}_K(\mathbf{x}) d\mathbf{x}$$

for y in B(j), and the quantile function  $R_{jK}$  has estimate  $\hat{R}_{jK}$  defined by

$$\hat{G}_{jK}(\hat{R}_{jK}(p)) = p$$

for  $0 . For a continuously differentiable function <math>f_{Kjy}$  on the set of K arrays,  $\hat{G}_{jk}(y) = f_{Kjy}(\hat{\theta}_K)$ , and  $f_{Kjy}$  has gradient

$$\mathbf{T}_{jK}(y) = \int_{B(j,y)} [\mathbf{u}_K(\mathbf{x}) - \boldsymbol{\mu}_K] g_K(\mathbf{x}) d\mathbf{x}$$

at  $\boldsymbol{\theta}_K$ . The delta method (Rao, 1973, p. 388) and the fact that  $\hat{G}_{jK}$  is a continuous distribution function may be employed to demonstrate that, as the sample size n approaches  $\infty$ ,  $\hat{G}_{jK}(y)$  converges to  $G_{jK}(y)$  with probability 1 for y in B(j), so that  $|\hat{G}_{jK} - G_{jK}|$ , the supremum of  $|\hat{G}_{jK}(y) - G_{jK}(y)|$  for y in B(j), converges to 0 with probability 1. In addition,  $[\hat{G}_{Kj}(y) - G_{jK}(y)]/\sigma(\hat{G}_{jK}(y))$  converges in distribution to a normal random variable with mean 0 and variance 1 if

$$\sigma(\hat{G}_{jK}(y)) = n^{-1/2} \{ [\mathbf{T}_{jK}(y)]' \mathbf{A}_K \mathbf{T}_{jK}(y) \}^{1/2}$$

Similarly,  $\hat{R}_{jK}(p)$  converges to  $R_{jK}(p)$  with probability 1, and  $[\hat{R}_{jK}(p) - R_{jK}(p)]/\sigma(\hat{R}_{jK}(p))$  converges in distribution to a normal random variable with mean 0 and variance 1 if

$$\sigma(\hat{R}_{jK}(p)) = [g_{jK}(R_{jK}(p))]^{-1}\sigma(\hat{G}_{jK}(R_{jK}(p)))$$

and  $g_{jK}(y)$  is the marginal density corresponding to  $G_{jK}$ . Thus  $g_{1K}(y)$  is the integral of  $g_K((y,x_2))$  over  $x_2$  in B(2), and  $g_{2K}(y)$  is the integral of  $g_K((x_1,y))$  over  $x_1$  in B(1). Estimated asymptotic standard deviations may be derived by use of obvious substitutions of estimated parameters for actual parameters. Thus

$$\hat{\sigma}(\hat{G}_{jK}(y)) = n^{-1/2} \{ [\hat{\mathbf{T}}_{jK}(y)]' \hat{\mathbf{A}}_K \hat{\mathbf{T}}_{jK}(y) \}^{1/2},$$

where

$$\hat{\mathbf{T}}_{jK}(y) = \int_{B(j,y)} [\mathbf{u}_K(\mathbf{x}) - \mathbf{m}_K] \hat{g}_K(\mathbf{x}) d\mathbf{x},$$

$$\hat{\sigma}(\hat{R}_{jK}(p)) = [\hat{g}_{jK}(\hat{R}_{jK}(p))]^{-1} \hat{\sigma}(\hat{G}_{jK}(\hat{R}_{jK}(p))),$$

and  $\hat{g}_{jK}(y)$  is the marginal density corresponding to  $\hat{G}_{jK}$ .

The estimate  $\hat{e}_{12K}$  of the conversion function  $e_{12K}(y)$  from Form 1 to Form 2 satisfies  $\hat{e}_{12K}(y) = \hat{R}_{2K}(\hat{G}_{1K}(y))$  for y in B(1), and the corresponding estimate  $\hat{e}_{21K}$  of  $e_{21K}$  satisfies  $\hat{e}_{21K}(y) = \hat{R}_{1K}(\hat{G}_{2K}(y))$  for y in B(2) As the sample size n become large,  $\hat{e}_{12K}(y)$  converges with probability 1 to  $e_{12K}(y)$  for y in B(1), and  $\hat{e}_{21K}(y)$  converges with probability 1 to  $e_{21K}(y)$  for

y in B(2). In addition,  $[\hat{e}_{12K}(y) - e_{12K}(y)]/\sigma(\hat{e}_{12K}(y))$  converges in distribution to a standard normal random variable if

$$\sigma(\hat{e}_{12}(y)) = n^{-1/2} \{ [\mathbf{T}_{1K}(y) - \mathbf{T}_{2K}(e_{12}(y))]' \mathbf{A}_K [\mathbf{T}_{1K}(y) - \mathbf{T}_{2K}(e_{12}(y))] \}^{1/2},$$

In like manner,  $[\hat{e}_{21K}(y) - e_{21K}(y)]/\sigma(\hat{e}_{21K}(y))$  converges in distribution to a standard normal random variable if

$$\sigma(\hat{e}_{21}(y)) = n^{-1/2} \{ [\mathbf{T}_{2K}(y) - \mathbf{T}_{1K}(e_{21}(y))]' \mathbf{A}_K [\mathbf{T}_{2K}(y) - \mathbf{T}_{1K}(e_{21}(y))] \}^{1/2},$$

The EASD of  $\hat{e}_{12}(y)$  is

$$\hat{\sigma}(\hat{e}_{12}(y)) = n^{-1/2} \{ [\hat{\mathbf{T}}_{1K}(y) - \hat{\mathbf{T}}_{2K}(\hat{e}_{12}(y))]' \hat{\mathbf{A}}_K [\hat{\mathbf{T}}_{1K}(y) - \hat{\mathbf{T}}_{2K}(\hat{e}_{12}(y))] \}^{1/2},$$

The EASD of  $\hat{e}_{21}(y)$  is

$$\hat{\sigma}(\hat{e}_{21}(y)) = n^{-1/2} \{ [\hat{\mathbf{T}}_{2K}(y) - \hat{\mathbf{T}}_{1K}(\hat{e}_{21}(y))]' \hat{\mathbf{A}}_K [\hat{\mathbf{T}}_{2K}(y) - \hat{\mathbf{T}}_{1K}(\hat{e}_{21}(y))] \}^{1/2}.$$

### 3 Computational Issues

Given a starting value  $\theta_{K0}$ , the Newton-Raphson algorithm may be employed to compute  $\hat{\theta}_K$ . Computation of  $\hat{\theta}_K$  corresponds to minimization of  $H_K$ . At step  $t \geq 0$ , a new approximation  $\theta_{K(t+1)}$  of  $\hat{\theta}_K$  is found by the equation

$$\boldsymbol{\theta}_{K(t+1)} = \boldsymbol{\theta}_{Kt} + \mathbf{C}_{Kt}^{-1}[\mathbf{m}_K - \boldsymbol{\mu}_{Kt}].$$

Here

$$g_{Kt}(\mathbf{x}) = \gamma_K(\boldsymbol{\theta}_{Kt}) \exp[\boldsymbol{\theta}'_{Kt} \mathbf{u}_K(\mathbf{x})],$$

 $\mathbf{x}$  in B,  $\gamma_K(\boldsymbol{\theta}_{Kt})$  is defined so that

$$\int_{B} g_{Kt}(\mathbf{x}) d\mathbf{x} = 1,$$

$$\boldsymbol{\mu}_{Kt} = \int_{B} \mathbf{u}_{K}(\mathbf{x}) g_{Kt}(\mathbf{x}) d\mathbf{x},$$

 $\mathbf{m}_K - \boldsymbol{\mu}_{Kt}$  is the gradient of  $H_K$  at  $\boldsymbol{\theta}_{Kt}$ , and

$$\mathbf{C}_{Kt} = \int_{B} [\mathbf{u}_{K}(\mathbf{x}) - \boldsymbol{\mu}_{Kt}] [\mathbf{u}_{K}(\mathbf{x}) - \boldsymbol{\mu}_{Kt}]' g_{Kt}(\mathbf{x}) d\mathbf{x}$$

is the Hessian matrix of  $H_K$  at  $\boldsymbol{\theta}_{Kt}$ .

The Newton-Raphson algorithm is also employed to evaluate quantile functions (Haberman, 1996, pp. 426–427). The algorithm considers solution of the equation

$$\log[\hat{G}_{jK}(\hat{R}_{jK}(p))/p] = 0$$

for a given p in the interval (0,1). Given an initial approximation  $R_{jk0}(p)$  to  $\hat{R}_{jK}(p)$  and the fact that  $\log(\hat{G}_{jK})$  has derivative  $\hat{g}_{jK}/\hat{G}_{jK}$ , the Newton-Raphson algorithm produces approximations  $R_{jKt}(p)$  to  $\hat{R}_{jK}(p)$  such that

$$R_{jK(t+1)}(p) = R_{jKt}(p) - \hat{G}_{jK}(R_{jKt}(p)) \log[\hat{G}_{jK}(R_{jK}(p))/p]/\hat{g}_{jK}(R_{jKt}(p)).$$

The Legendre polynomials used in typical cases to define  $\mathbf{u}_K$  also form the basis for the Gaussian quadrature used for evaluation of all integrals on B, B(1), and B(2) (Abramowitz & Stegun, 1965, p. 887). In the case of  $\hat{G}_{jK}(y)$ , the limits of integration of the numerator related to Form j are from  $\inf(B(j))$  to y rather than from  $\inf(B(j))$  to  $\sup(B(j))$ , so that the scaled Legendre polynomials are modified accordingly for Gaussian quadrature. In this paper, calculations use 20-point Gaussian quadrature for each dimension. The larger number of points than used in previous work on equivalent groups (Haberman, 2008) reflects the numerical challenge associated with form scores that are typically highly correlated.

The rectangle rule of integration has been employed in the literature for the case with  $B(j) = (c_j - 0.5, d_j + 0.5)$  (Wang, 2008), with  $c_j$  and  $d_j$  integers, and with the integers from  $c_j$  to  $d_j$  used as equally weighted quadrature points. Because the distance between quadrature points is not small, this integration approach yields errors that are not negligible. For expectations  $E(Y_{1K}^{k(1)}Y_{2K}^{k(2)})$ , approximation errors are of order  $(d_1 - c_1)^{-2} + (d_2 - c_2)^{-2}$ , so that they can be expected to be relatively minor for very long tests and somewhat more obvious for quite short tests. Unfortunately, the proper conditions for use of Sheppard's corrections (Kolassa & McCullagh, 1990) do not apply, so that the most precise approach to evaluation of errors is unavailable. It should be emphasized that, in practice, use of Legendre polynomials results in both higher accuracy and less computation than does use of the rectangle rule.

### 4 Example

Table 8.2 of von Davier et al. (2004) provides an example of a single-group design with  $c_j = 0$  and  $d_j = 20$  for  $1 \le j \le 2$ . To illustrate results, let B(1) = B(2) = (-0.5, 20.5). The  $u_{kj}$ 

are defined based on Legendre polynomials, and three sets K are considered. These sets are

$$K(2) = \{(1,0), (2,0), (0,1), (0,2), (1,1)\},\$$

$$K(3) = \{(1,0), (2,0), (3,0), (0,1), (0,2), (0,3), (1,1)\},\$$

and

$$K(4) = \{(1,0), (2,0), (3,0), (4,0), (0,1), (0,2), (0,3), (0,4), (1,1)\}.$$

Results for parameters are summarized in Table 1. Results in terms of estimated expected log penalties are summarized in Table 2. These results suggest that gains beyond the quadratic case K(2) are quite small, although K(4) differs from K(3) more than K(3) differs from K(2).

 $\begin{array}{c} \textbf{Table 1} \\ \textbf{Model Parameters} \end{array}$ 

|        | K(2)   |       | K(3)   |       | K(4)   |       |
|--------|--------|-------|--------|-------|--------|-------|
| k      | Est.   | EASD  | Est.   | EASD  | Est.   | EASD  |
| (1,0)  | 0.902  | 0.118 | 1.012  | 0.140 | 1.056  | 0.153 |
| (2,0)  | -6.174 | 0.226 | -6.226 | 0.231 | -6.381 | 0.262 |
| (3,0)  |        |       | 0.174  | 0.124 | 0.234  | 0.147 |
| (4,0)  |        |       |        |       | -0.192 | 0.152 |
| (0, 1) | -0.463 | 0.126 | -0.543 | 0.138 | -0.477 | 0.179 |
| (0, 2) | -7.152 | 0.266 | -7.141 | 0.265 | -7.931 | 0.307 |
| (0, 3) |        |       | -0.117 | 0.117 | -0.034 | 0.167 |
| (0, 4) |        |       |        |       | -0.836 | 0.164 |
| (1, 1) | 15.619 | 0.663 | 15.624 | 0.664 | 15.520 | 0.661 |

*Note.* EASD = estimated asymptotic standard deviation, est. = estimate.

Table 2
Estimated Expected Log Penalties

| $\overline{K}$ | Estimate | EASD  |
|----------------|----------|-------|
| K(2)           | 4.969    | 0.022 |
| K(3)           | 4.968    | 0.022 |
| K(4)           | 4.960    | 0.022 |

*Note.* EASD = estimated asymptotic standard deviation, est. = estimate.

Not surprisingly, the three choices of K lead to rather similar conversion functions. Consider Table 3 for the case of conversion of Form 1 to Form 2. A bit more variability in results exists for very high or very low values, although estimated asymptotic standard deviations are more variable than are estimated conversions. Note that results are also similar to those for kernel equating (von Davier et al., 2004, chap. 8) shown in Table 4. These results employ a log-linear model for the joint distribution of the scores that is comparable to the model defined by K(3) for a continuous exponential family. The log-linear fit preserves the initial three marginal moments for each score distribution as well as the covariance of the two scores. As a consequence, the marginal distributions produced by the kernel method have the same means and variances as do the corresponding distributions of  $X_{i1}$  and  $X_{i2}$ , but the kernel methods yields the distribution of a continuous random variable for the first form with a skewness coefficient that is 0.987 times the original skewness coefficient for  $X_{i1}$  and a distribution of a continuous random variable for the second form that with a skewness coefficient that is 0.983 times the original skewness coefficient for  $X_{i2}$ .

### 5 Conclusions

As in the case of equivalent groups (Haberman, 2008), linking forms in a single-group design by continuous exponential families appears similar in result to linking the same forms via kernel equating. Continuous exponential families offer some possible gains. Unlike kernel equating, bandwidths are not required, so that fewer specifications are required. In kernel equating, log-linear smoothing and production of continuous distribution functions require distinct steps. In the case of continuous exponential families, a model is fit that immediately results in continuous distribution functions.

Although this gain is not apparent in the example, a possible gain from continuous exponential families is that application to assessments with unevenly spaced scores or very large numbers of possible scores is completely straightforward. Thus direct conversion from a raw score on one form to an unrounded scale score on a second form involves no difficulties. In addition, in tests with formula scoring, no need exists to round raw scores to integers during equating.

The single-group design provides the basis for more complex linking designs with anchor tests (von Davier et al., 2004, chap. 9), so that results of this report are readily applied to a very wide variety of linking problems.

|       | K(2)   |       | K(3)   |       | K(4)   |       |
|-------|--------|-------|--------|-------|--------|-------|
| Value | Est.   | EASD  | Est.   | EASD  | Est.   | EASD  |
| 0     | 0.111  | 0.077 | -0.040 | 0.113 | 0.404  | 0.262 |
| 1     | 1.168  | 0.128 | 0.927  | 0.204 | 1.404  | 0.264 |
| 2     | 2.144  | 0.135 | 1.917  | 0.208 | 2.269  | 0.221 |
| 3     | 3.091  | 0.130 | 2.910  | 0.182 | 3.121  | 0.176 |
| 4     | 4.028  | 0.120 | 3.899  | 0.151 | 3.987  | 0.140 |
| 5     | 4.959  | 0.108 | 4.881  | 0.122 | 4.874  | 0.117 |
| 6     | 5.889  | 0.097 | 5.854  | 0.101 | 5.785  | 0.105 |
| 7     | 6.819  | 0.086 | 6.819  | 0.087 | 6.721  | 0.100 |
| 8     | 7.748  | 0.076 | 7.775  | 0.080 | 7.679  | 0.095 |
| 9     | 8.677  | 0.069 | 8.722  | 0.078 | 8.653  | 0.090 |
| 10    | 9.606  | 0.065 | 9.661  | 0.078 | 9.634  | 0.086 |
| 11    | 10.536 | 0.064 | 10.591 | 0.077 | 10.611 | 0.085 |
| 12    | 11.465 | 0.066 | 11.512 | 0.077 | 11.574 | 0.088 |
| 13    | 12.394 | 0.073 | 12.425 | 0.077 | 12.514 | 0.092 |
| 14    | 13.324 | 0.081 | 13.331 | 0.081 | 13.427 | 0.094 |
| 15    | 14.256 | 0.091 | 14.231 | 0.090 | 14.310 | 0.096 |
| 16    | 15.193 | 0.102 | 15.128 | 0.105 | 15.166 | 0.101 |
| 17    | 16.141 | 0.113 | 16.033 | 0.126 | 16.003 | 0.116 |
| 18    | 17.119 | 0.121 | 16.967 | 0.149 | 16.838 | 0.142 |
| 19    | 18.173 | 0.123 | 17.985 | 0.167 | 17.716 | 0.174 |
| 20    | 19.495 | 0.094 | 19.304 | 0.150 | 18.842 | 0.198 |

 $Note.\ {\it EASD} = {\it estimated}\ {\it asymptotic}\ {\it standard}\ {\it deviation},\ {\it est.}\ =\ {\it estimate}.$ 

| Value | Estimate | EASD  |
|-------|----------|-------|
| 0     | -0.002   | 0.162 |
| 1     | 0.999    | 0.221 |
| 2     | 1.981    | 0.221 |
| 3     | 2.956    | 0.193 |
| 4     | 3.926    | 0.159 |
| 5     | 4.890    | 0.128 |
| 6     | 5.850    | 0.104 |
| 7     | 6.805    | 0.089 |
| 8     | 7.756    | 0.080 |
| 9     | 8.702    | 0.078 |
| 10    | 9.643    | 0.077 |
| 11    | 10.580   | 0.077 |
| 12    | 11.512   | 0.077 |
| 13    | 12.439   | 0.078 |
| 14    | 13.362   | 0.083 |
| 15    | 14.283   | 0.095 |
| 16    | 15.206   | 0.115 |
| 17    | 16.140   | 0.140 |
| 18    | 17.105   | 0.167 |
| 19    | 18.155   | 0.185 |
| 20    | 19.411   | 0.158 |

 $Note.\ {\it EASD} = {\it estimated}\ {\it asymptotic}\ {\it standard}\ {\it deviation},\ {\it est.}\ =\ {\it estimate}.$ 

### References

- Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions. New York: Dover.
- Gilula, Z., & Haberman, S. J. (2000). Density approximation by summary statistics: An information-theoretic approach. *Scandinavian Journal of Statistics*, 27, 521–534.
- Haberman, S. J. (1996). Advanced statistics: Vol. 1. Description of populations. New York: Springer-Verlag.
- Haberman, S. J. (2008). Continuous exponential families: An equating tool (Research Rep. No. RR-08-05). Princeton, NJ: ETS.
- Kolassa, J. E., & McCullagh, P. (1990). Edgeworth series for lattice distributions. The Annals of Statistics, 18, 981–985.
- Rao, C. R. (1973). Linear statistical inference and its applications (2nd ed.). New York: John Wiley.
- von Davier, A. A., Holland, P. W., & Thayer, D. T. (2004). The kernel method of test equating. New York: Springer.
- Wang, T. (2008). The continuized log-linear method: An alternative to the kernel method of continuization in test equation. Applied Psychological Measurement, 33(7), 527–542.